Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

Authors

  • George Oguntala Faculty of Engineering and Informatics University of Bradford, BD7 1DP West Yorkshire, UK
  • Raed Abd-Alhameed School of Electrical Engineering Faculty of Engineering and Informatics, University of Bradford, UK
Abstract:

In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conductivity (nonlinear) parameters on the thermal performance of the fin. The results of this study reveal that the rate of heat transfer from the fin increases as convective, radioactive, and magnetic parameters increase. This study finds good agreements between the obtained results using the Chebychev spectral collocation method and the results obtained using the Runge-Kutta method along with shooting, homotopy perturbation, and Adomian decomposition methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Analysis of Heat transfer in Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation using Chebychev Spectral Collocation Method

In this work, analysis of heat transfer in porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Chebychev spectral collocation method. The numerical solutions are used to investigate the influence of various parameters on the thermal performance of the porous fin. The results show that increase in convective parameter, porosity parameter, ...

full text

Variation of Parameters Method for Thermal Analysis of Straight Convective- Radiative Fins with Temperature Dependent Thermal Conductivity

In this study, thermal performance across straight convecting- radiating fin with temperature dependent thermal conductivity is considered. The variation of parameters (VPM) is adopted to analyze the nonlinear higher order differential equations arising due to thermal conductivity and heat transfer coefficient on temperature distribution. Pertinent parameters such as thermo geometric and radiat...

full text

Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation

In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the th...

full text

The Efficiency of Convective-radiative Fin with Temperature-dependent Thermal Conductivity by the Differential Transformation Method

In this study, a simple and accurate solution for the temperature distribution of convective-radiative straight rectangular fins with temperature-dependent thermal conductivity is presented using an analytical method called the Differential Transformation Method (DTM). The governing differential equation for the temperature distribution in present problem contains two nonlinear terms, one due t...

full text

Prediction of Temperature distribution in Straight Fin with variable Thermal Conductivity and Internal Heat Generation using Legendre Wavelet Collocation Method

Due to increasing applications of extended surfaces as passive methods of cooling, study of thermal behaviors and development of mathematical solutions to nonlinear thermal models of extended surfaces have been the subjects of research in cooling technology over the years. In the thermal analysis of fin, various methods have been applied to solve the nonlinear thermal models. This paper focuses...

full text

Wavelet collocation solution of non-linear Fin problem with temperature dependent thermal conductivity and heat transfer coefficient

In this paper, Wavelet Collocation Method has been used to solve nonlinear fin problem with temperature dependent thermal conductivity and heat transfer coefficient. Thermal conductivity of fin materials varies any type so that we consider thermal conductivity as the general function of temperature.  Here we consider three particular cases, where we assume that thermal conductivity is constant,...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  87- 94

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023